Contact Mechanics

Eric Magel National Research Council, Canada

PRINCIPLES COURSE · JUNE 7

National Research Conseil national de

Contact Mechanics: The stresses and deformations that arise when two solid bodies are brought into contact

PRINCIPLES COURSE · JUNE 7

MENSCO

Rubber tire on pavement

• stress (pressure) = force/area

PRINCIPLES COURSE · JUNE 7

- Automobile: 2600 lbs (1200 kg)
 - Front wheel load is ≈780 lbs (350 kg), rear is ≈520 lbs (235 kg)
 ×45

• Tire pressure: 32psi (0.22 MPa)

Rail/wheel: avg is about 1500X greater

0.5 in², 12mm²

WRI 2023

Rolling resistance:

35X steel on steel.

Rubber tire on concrete is

- Contact stress is ≈1.6X => 50psi (0.35 MPa)
- Contact area: 780/50=15.6 in² (98cm²)

3

Outline

- Hertzian contact model and stress calculations
- Pummelling
- Surface Roughness
- Creepage/slip, Creep forces
- Shakedown
- Conclusions

PRINCIPLES COURSE · JUNE 7

National Research Consel national de

Hertzian contacts

Hertzian Line Contact

$$P_o = \left[\frac{P'E^*}{\pi R}\right]^{1/2}$$

P'=P/t = load per unit length $R = (1/R_1+1/R_2)^{-1} = effective radius$ $E^*=combined \ elastic \ modulus$

PRINCIPLES COURSE · JUNE 7

MENSCO

National Research Consell national de Council Canada recherches Canada

MENSCO

PRINCIPLES COURSE · JUNE 7

WRI 2023

Conseil national de

7

Most W/R contacts are non-Hertzian

Generally: Hertzian assumption is not too bad: ±20%

Terminology

Non-Hertzian Models

- CONTACT
- Paul and Hashemi
- FASIM
- Kik and Piotrowski

PRINCIPLES COURSE · JUNE 7

• Finite elements

Hertzian Formulae

	Line Contact Width 2b, Load P' per unit length	Circular Contact (diameter 2a, load P)
Semi-contact width or contact radius	$b = 2 \left[\frac{P' R}{\pi E^*} \right]^{1/2}$	$a = \left[\frac{3}{4} \frac{PR}{E^*}\right]^{1/3}$
Maximum contact pressure ("Hertz Stress")	$P_o = \left[\frac{P' E^*}{\pi R}\right]^{1/2}$	$P_{o} = \frac{1}{\pi} \left[\frac{6PE^{*2}}{R^{2}} \right]^{1/3}$
Approach of centers	$\delta = \frac{2P'}{\pi} \left\{ \frac{1 - v_1^2}{E_1} \left[\ln \frac{4R_1}{b} - \frac{1}{2} \right] + \frac{1 - v_2^2}{E_2} \left[\ln \frac{4R_2}{b} \right] - \frac{1}{2} \right\}$	$\delta = \frac{a^2}{R} = \frac{1}{2} \left[\frac{9}{2} \frac{P^2}{RE^{*2}} \right]^{1/3}$
Mean contact pressure	$\overline{p} = \frac{P'}{2b} = \frac{\pi}{4}P_o$	$\overline{p} = \frac{P}{\pi a^2} = \frac{2}{3}P_o$
Maximum shear stress	$\tau_{\rm max} \cong 0.30 P_o$ at (x=0, z=0.78b)	$\tau_{\max} \cong 0.31 P_o$ at (r=0, z=0.48a)

Radius (R) Load (P) Elastic Modulus (E)

PRINCIPLES COURSE · JUNE 7

National Research Consel national de recherches Canada

Contact stress calc. - TOR

• Steel wheel on Steel rail $E^* = \left(\frac{1-v_1^2}{E_1} + \frac{1-v_2^2}{E_2}\right)^{-1}$

 $v_1 = v_2 = 0.29$, $E_1 = E_2 = 200 \ GPa \rightarrow E^* = 109 \ e9 \ Pa = 1.58 \ e7 \ psi$

- 8" (200mm) rail head radius
- New tapered wheel profile $R_{WT} = \infty$
- Wheel radius is 480mm (≈19") R_{WL} = 0.480m
- Wheel load is 18000 kg $X 9.81 \approx 176.6 \text{ kN} = P$

PRINCIPLES COURSE · JUNE 7 VENSCO

 $R_{RT} = 0.200m, R_{RL} = \infty$

WRI 2023

Complete calculation

$$R_{T} = \left(\frac{1}{R_{RT}} + \frac{1}{R_{WT}}\right)^{-1} = \left(\frac{1}{0.20} + \frac{1}{\infty}\right)^{-1} = 0.20 \text{m}$$

$$R_{L} = \left(\frac{1}{R_{RL}} + \frac{1}{R_{WL}}\right)^{-1} = \left(\frac{1}{\infty} + \frac{1}{0.480}\right)^{-1} = 0.480 \text{m}$$

$$R = \sqrt{R_{T}R_{L}} = \sqrt{0.20 \times 0.480} = 0.31 \text{m}$$

$$P_{0} = \frac{1}{\pi} \left[\frac{6 \times 176,600 \times (109e^{9})^{2}}{0.31^{2}}\right]^{1/3} = 1616 \ e^{6} \text{ Pa} (234 \text{ ksi}) \qquad a = \left[\frac{3}{4} \frac{PR}{E^{*}}\right]^{1/3} F_{1}(R_{L}/R_{T})$$

$$a = \left[\frac{3}{4} \frac{176600 \times 0.31}{109e^{9}}\right]^{1/3} = 0.00722 \text{ m} \equiv 7.22 \text{ mm} \rightarrow 14.5 \text{ mm} \text{ diam}, 9/16''$$

$$\text{WRI 2023}$$

National Research Consel national de Council Canada mohembes Canada

14

-1/3

Hertzian Contacts – Sign Convention

Contact stress calc. – rail shoulder

- 32 mm radius $\mathbf{R}_{\mathbf{RT}} = 0.032 \text{m}, \mathbf{R}_{\mathbf{RL}} = \infty$
- 38 mm flange root radius $R_{WT} = -0.038 m$
- Wheel radius is 240 mm $\mathbf{R}_{WL} = 0.240 \text{m}$

$$\mathbf{R}_{\mathbf{L}} = 0.240 \text{m}$$
$$\mathbf{R}_{\mathbf{T}} = \left(\frac{1}{0.032} - \frac{1}{0.038}\right)^{-1} = 0.2027$$
$$R = \sqrt{0.240 \times 0.2027} = 0.221$$

Complete calculation

$$P_o = \frac{1}{\pi} \left[\frac{6PE^{*2}}{R^2} \right]^{1/3} \qquad P_o = \frac{1}{\pi} \left[\frac{6 \times 88290 \times (109e^9)^2}{0.221^2} \right]^{1/3} = 1608 \ e^6 \text{ Pa}$$

$$a = \left[\frac{3}{4} \frac{PR}{E^*}\right]^{1/3} \qquad a = \left[\frac{3}{4} \frac{88290 \times 0.221}{109e^9}\right]^{1/3} = 0.00512 \text{ m} \equiv 5.12 \text{ mm} \rightarrow 10.24 \text{ mm} \text{ diam, } 13/32$$

Material properties Body 1 Select material Young's modulus 200 GPa Poisson's ratio 0.29 Maximum stress 355 MPa Body 2 Maximum stress 355 MPa Body 2 Maximum stress 355 MPa Body 2 Maximum stress S55 MPa Body 2 Radius 1x Roughness 0 um Angle 0 degrees 4.32 Max: shear stress 1 1613 MPa Inpression 118.5 Max. shear stress 2 509.2 MPa Elastic energy 4.19 Lifetime	HertzWin 3.3.1		- 🗆 X
Dimensions and contact type	Material properties Body 1 Select material Young's modulus 200 GPa Poisson's ratio 0.29 Maximum stress 355 MPa	Body 2Select materialYoung's modulus200GPaPoisson's ratio0.290.29Maximum stress355MPa	Edit material Force Normal 88290 Newton Static O Rolling
Angle 0 degrees 1 Angle Results Contact radius a 5.408 mm Tensile stress at radius a 230.4 MPa Contact radius b 4.832 mm Tensile stress at radius b 220.2 MPa Hertz contact stress 1 1613 MPa Impression 118.5 um Max. shear stress 1 509.2 MPa Hertz contact stiffness Cz 1.12E09 N/m Max. shear stress 2 509.2 MPa Elastic energy 4.19 J	Dimensions and contact type Circular/elliptical contact Line Body 1 Radius 1x I0000000 mm Radius 1y Infinite Roughness 0 um 	contact Body 2 Radius 2x 240 mm Infinite Radius 2y -38 mn Infinite Roughness 0 um	Contact
	Angle 0 degrees 1 Angle Results Contact radius a 5.408 mm 1 Contact radius b 4.832 mm 1 Hertz contact stress 1613 MPa 1 Max. shear stress 1 509.2 MPa 1 Max. shear stress 2 509.2 MPa 1	Tensile stress at radius a230.4MPaTensile stress at radius b220.2MPampression118.5umHertz contact stiffness Cz1.12E09N/mElastic energy4.19J	F normal $ \begin{array}{c} F \\ $

Rail/Wheel: Hertzian Contact Stress (MPa)

$$P_o = \left(\frac{6PE^{*2}}{\pi^3 R_e^2}\right)^{1/3} \times \left[F_1 (R_L / R_T)^{-2/3} \right]$$

spherical contacts

accounts for ellipticity

	Traverse Radius		Load, Wheel Radius					
Location	Rail (mm)	Wheel (mm)	18 Tonnes 480 mm		18 Tonnes 240 mm		9 Tonnes 240 mm	
Rail Crown	+200	-300	1130	(1.00)	1438	(1.27)	1141	(1.01)
	+75	-100	1428	(1.26)	1794	(1.59)	1424	(1.26)
	+100	-300	1819	(1.61)	2267	(2.01)	1800	(1.59)
	+200	infinity	1645	(1.46)	2053	(1.82)	1629	(1.44)
Rail Shoulder	+32	-38	1637	(1.45)	2043	(1.81)	1622	(1.44)
	+32	-44	1984	(1.76)	2469	(2.18)	1960	(1.73)
Flange Root	+8	-9.5	2678	(2.37)	3317	(2.94)	2632	(2.33)
False Flange	+300	+50	2845	(2.52)	3520	(3.12)	2794	(2.47)

PRINCIPLES COURSE · JUNE 7

National Research Consell national de

Elastic loading of quarter space

Collapse is stronger if closer to the edge

Pummelling

The influence of

SURFACE ROUGHNESS

PRINCIPLES COURSE · JUNE 7

National Research Consell national de Council Canada moherches Canada

Surface Roughness

On a microscale, all surfaces are rough

from Dagnall H, *Exploring Surface Texture*, Rank Taylor Hobson (1980).

PRINCIPLES COURSE · JUNE 7

National Research Consell national de Council Canada recherches Canada

Contact between real surfaces

- Real area of contact is much smaller than the nominal area
- Apparent area: $A_A = ab$
- Real area

$$A_R = \sum_{i=1}^n A_i$$

• Pressure = load/area

PRINCIPLES COURSE · JUNE 7

MENSCO

WRI 2023

Contact Stress

 Elastic contact models can be applied with errors of only a few percent if the combined roughness of the two surfaces is less than about 5% of the bulk elastic compression, i.e.

$$\alpha \equiv \frac{\sigma}{\delta} = \sigma \left(\frac{16E^*R}{9P}\right)^{1/3} < 0.05$$

- KL Johnson, <u>Contact Mechanics</u> Section 13.5
- Hertzian spring: 0.05 0.15mm => 2.5 7.5 μm

National Research Conseil national de Council Canada recherches Canada

Roughness from rail grinding

The rough wheel and wheel climb

T. Ban et al, A study on the coefficient of friction between rail gauge corner and wheel flange focussing on wheel machining, Proceedings International Wheelset Congress, Orlando, 2004

WRI 2023

Surface Roughness - conclusion

- Important ۲
 - high frequency phenomena (noise, vibration)
 - Deformation of the micro-surface layer
- Little impact •
 - bulk contact stresses
 - Wheel/rail forces
- Wheel roughness $\leftarrow \rightarrow$ wheel climb ?? ullet

PRINCIPLES COURSE · JUNE 7

National Research Consell national de recherches Canada

CREEPAGE/SLIP

PRINCIPLES COURSE · JUNE 7

National Research Consel national de recherches Canada

Stick and Slip in the Contact Patch

Elastic deformation in rolling bodies in stick and slip regions in rolling sliding contact

Creepage in a single wheel/rail contact

Longitudinal Creepage $\psi_X = \frac{V_2 - V_1}{V_2}$

Lateral Creepage

 $\psi_{\gamma} = \frac{\delta V_{\gamma}}{V_{\gamma}} = \tan \gamma$

Spin Parameter

$$\Phi = \omega \frac{(ab)^{1/2}}{V_1 R} = \left(\frac{(ab)^{1/2}}{R}\right) \tan \lambda$$

PRINCIPLES COURSE · JUNE 7

National Research Conseil national de

Third-body layer

MENSCO

PRINCIPLES COURSE · JUNE 7

- Petrochemical: oil, soap, grease
- Solid / mechanical: moly, graphite
- Chemical: phosphate, salts, etc.
 - LAYERS: Any microscopic mixture of solid and semi-solid particles

Consell national de recherches Canada

WRI 2023

34

Stick-Slip – Negative Friction

Wheel/rail stresses

- Vertical, longitudinal, and lateral forces
- Lead to a complex stress field
 - Compressive, tensile and shear stress components
- P₀ is maximum normal contact stress
- Important stresses = $\tau_{zx,} \tau_{zy}$
 - The stress on the z plane in the x and y direction
 - Cause shear of rail surface

Effect of shear stress

Figure 14.(c): Ratcheting Strains in Rail Material Caused by Large Longitudinal Creep Forces Between Wheel and Rail

SHAKEDOWN

PRINCIPLES COURSE · JUNE 7

National Research Consel national de recherches Canada

Conclusions

- Hertzian contacts •
 - Linear elasticity line, point and elliptical contacts ullet
 - These calculations are "reasonable" •
 - Don't rely too much on absolute numbers
- **Pummeling** need to consider whole range of profiles/conditions borne by rail/wheel
- Roughness generally not a contributing factor re contact stress
- Wheel and rail (transverse) profiles control contact stress

PRINCIPLES COURSE · JUNE 7

National Research Conseil national de

Conclusions – cont'd

- Friction raises the stress levels (and damage) considerably
- The wheel nearly always slips on the rail
- Stick and slip regions in the contact patch
- 3rd body layer => negative friction is a root cause of much noise, vibration, corrugation
- Shakedown is a useful approach for determining whether a wheel-rail contact is "good" or "bad"
- It is worth understanding and investing in contact mechanics to "get things right"

THANK YOU

Magel.Eric@ENSCO.com

ENSCO

Eric.Magel@nrc-cnrc.gc.ca

NRC, Canada

PRINCIPLES COURSE · JUNE 7

National Research Consell national de council Canada recherches Canada

43